翻訳と辞書
Words near each other
・ Penrose Island Marine Provincial Park
・ Penrose method
・ Penrose Methodist Chapel
・ Penrose Peak
・ Penrose Peak (Montana)
・ Penrose Peak (Wyoming)
・ Penrose Pegasus
・ Penrose Point State Park
・ Penrose process
・ Penrose Railway Station
・ Penrose railway station
・ Penrose square root law
・ Penrose stairs
・ Penrose Stout
・ Penrose tiling
Penrose transform
・ Penrose triangle
・ Penrose Wolf Building
・ Penrose, Arlington, Virginia
・ Penrose, Colorado
・ Penrose, Cornwall
・ Penrose, New South Wales (Wingecarribee)
・ Penrose, New Zealand
・ Penrose, North Carolina
・ Penrose, St. Louis
・ Penrose, Utah
・ Penroseite
・ Penrose–Hawking singularity theorems
・ Penrosian
・ Penruddock


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Penrose transform : ウィキペディア英語版
Penrose transform
In mathematical physics, the Penrose transform, introduced by , is a complex analogue of the Radon transform that relates massless fields on spacetime to cohomology of sheaves on complex projective space. The projective space in question is the twistor space, a geometrical space naturally associated to the original spacetime, and the twistor transform is also geometrically natural in the sense of integral geometry. The Penrose transform is a major component of classical twistor theory.
==Overview==

Abstractly, the Penrose transform operates on a double fibration of a space ''Y'', over two spaces ''X'' and ''Z''
:Z\xleftarrow Y \xrightarrow X.
In the classical Penrose transform, ''Y'' is the spin bundle, ''X'' is a compactified and complexified form of Minkowski space and ''Z'' is the twistor space. More generally examples come from double fibrations of the form
:G/H_1\xleftarrow G/(H_1\cap H_2) \xrightarrow G/H_2
where ''G'' is a complex semisimple Lie group and ''H''1 and ''H''2 are parabolic subgroups.
The Penrose transform operates in two stages. First, one pulls back the sheaf cohomology groups ''H''''r''(''Z'',F) to the sheaf cohomology ''H''''r''(''Y'',η−1F) on ''Y''; in many cases where the Penrose transform is of interest, this pullback turns out to be an isomorphism. One then pushes the resulting cohomology classes down to ''X''; that is, one investigates the direct image of a cohomology class by means of the Leray spectral sequence. The resulting direct image is then interpreted in terms of differential equations. In the case of the classical
Penrose transform, the resulting differential equations are precisely the massless field equations for a given spin.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Penrose transform」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.